TABLE S1. Concentration of different polymer species in versions of the model | Model | Isodesmic | | Monomer
Activation
+
Isodesmic | Segregated Assembly of | Only One End
Changes | |---------------------|-----------------------|----------------------------------|---|------------------------|-------------------------| | version: | Assembly | $\varepsilon = 1 \times 10^{-4}$ | Assembly | L_n and H_n | Conformation | | Cooperative? | No | Yes | Yes | Yes | No | | Equilibrium co | onstants | | | | | | K_C | 0 | 1×10^{-4} | $1x10^{-4}$ | 1×10^{-4} | 1×10^{-4} | | K_{LL} (μ M) | 1 | 1×10^{-4} | 0 | 1×10^{-4} | $1x10^{-4}$ | | $K_{LH}(\mu M)$ | 0 | 1×10^{-4} | 0 | 0 | $1x10^{-4}$ | | $K_{HH}(\mu M)$ | 0 | $1x10^{4}$ | $1x10^{4}$ | $1x10^{4}$ | $1x10^{4}$ | | K_{HL} (μ M) | 0 | $1x10^{-4}$ | 0 | 0 | $1x10^{4}$ | | Concentrations | s of polymer sp | pecies at equilib | rium* (μM) | | | | L | 7.30x10 ⁻¹ | 9.97x10 ⁻¹ | 9.97x10 ⁻¹ | 9.97x10 ⁻¹ | 7.30x10 ⁻¹ | | Н | 0 | 9.97x10 ⁻⁵ | 9.97×10^{-5} | 9.97x10 ⁻⁵ | 7.30×10^{-5} | | monomer | $7.30x10^{-1}$ | $9.97x10^{-1}$ | $9.97x10^{-1}$ | $9.97x10^{-1}$ | $7.30x10^{-1}$ | | LL | 5.33x10 ⁻¹ | 9.93x10 ⁻⁵ | 0 | 9.93x10 ⁻⁵ | 5.33×10^{-5} | | HL | 0 | 9.93×10^{-9} | 0 | 0 | 5.33×10^{-1} | | LH | 0 | 9.93×10^{-9} | 0 | 0 | 5.33×10^{-9} | | НН | 0 | 9.93x10 ⁻⁵ | 9.93x10 ⁻⁵ | 9.93x10 ⁻⁵ | 5.33×10^{-5} | | dimer | $5.33x10^{-1}$ | $1.99x10^{-4}$ | $9.93x10^{-5}$ | $1.99x10^{-4}$ | $5.33x10^{-1}$ | | LLL | 3.89x10 ⁻¹ | 9.90x10 ⁻⁹ | 0 | 9.90×10^{-9} | 3.89×10^{-9} | | HLL | 0 | 9.90×10^{-13} | 0 | 0 | 3.89×10^{-5} | | LHL | 0 | 9.90×10^{-13} | 0 | 0 | 3.89×10^{-5} | | LLH | 0 | 9.90×10^{-13} | 0 | 0 | 3.89×10^{-13} | | HHL | 0 | 9.90×10^{-9} | 0 | 0 | 3.89x10 ⁻¹ | | HLH | 0 | 9.90×10^{-17} | 0 | 0 | 3.89×10^{-9} | | LHH | 0 | 9.90×10^{-9} | 0 | 0 | 3.89×10^{-9} | | ННН | 0 | 9.90x10 ⁻⁵ | 9.90x10 ⁻⁵ | 9.90x10 ⁻⁵ | 3.89x10 ⁻⁵ | | trimer | 3.89x10 ⁻¹ | 9.90x10 ⁻⁵ | $9.90x10^{-5}$ | $9.90x10^{-5}$ | 3.89x10 ⁻¹ | | LLLL | 2.84x10 ⁻¹ | 9.87×10^{-13} | 0 | 9.87×10^{-13} | 2.84×10^{-13} | | HLLL | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-9} | | LHLL | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-9} | | LLHL | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-9} | | LLLH | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-17} | | HHLL | 0 | 9.87×10^{-13} | 0 | 0 | 2.84×10^{-5} | | HLHL | 0 | 9.87×10^{-21} | 0 | 0 | 2.84×10^{-5} | | HLLH | 0 | 9.87×10^{-21} | 0 | 0 | 2.84×10^{-13} | | LHHL | 0 | 9.87×10^{-13} | 0 | 0 | 2.84×10^{-5} | | LHLH | 0 | 9.87×10^{-21} | 0 | 0 | 2.84×10^{-13} | | LLHH | 0 | 9.87×10^{-13} | 0 | 0 | 2.84×10^{-13} | | LHHH | 0 | 9.87×10^{-9} | 0 | 0 | 2.84×10^{-9} | | HLHH | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-9} | | HHLH | 0 | 9.87×10^{-17} | 0 | 0 | 2.84×10^{-9} | | HHHL | 0 | 9.87×10^{-9} | 0 | 0 | 2.84×10^{-1} | | НННН | 0 | 9.87x10 ⁻⁵ | 9.87x10 ⁻⁵ | 9.87x10 ⁻⁵ | 2.84x10 ⁻⁵ | | tetramers | $2.84x10^{-1}$ | $9.87x10^{-5}$ | $9.87x10^{-5}$ | $9.87x10^{-5}$ | $2.8x10^{-1}$ | tetramers $2.84x10^{-1}$ $9.87x10^{-5}$ $9.87x10^{-5}$ $9.87x10^{-5}$ $9.87x10^{-5}$ $2.8x10^{-1}$ *Results were calculated for 10 μ M total protein (z_o). In bold are the most abundant species of each length. In italics are the total concentration of polymers of each length. **Figure S1.** Determining which combination of parameters produce the greatest cooperativity. In cooperative systems, polymer does not assemble unless the equilibrium monomer concentration has nearly reached its maximum possible value. Therefore, in a plot of *p* versus z_I , ideally cooperative systems will exhibit a sharp 90° bend upwards; the closer a curve is to this ideal, the more cooperative the system. (*A*) In cooperative systems, K_{HH} must be large and all other parameters small. The five equilibrium constants were set equal to 1, 0.1, or 10 in all combinations. For each combination of values, *p* and z_I were first calculated for a range of L concentrations, then normalized by dividing by z_I^{∞} . Arrow: The greatest cooperativity is seen in the right-most trajectory, where $K_{HH} = 10$ while all other equilibrium constants = 0.1. Arrowhead: Isodesmic polymerization with all K's = 1 is in the middle of the data sets. (*B*) Nearly ideal cooperativity can be produced when equilibrium constants are varied over a wider range. Here, K_C , K_{LL} , K_{LH} , and $K_{HL} = \varepsilon$ and $K_{HH} = 1/\varepsilon$ for $\varepsilon = 1$, 1×10^{-2} , 1×10^{-4} , and 1×10^{-6} . The left hand, least sharply curved line is for $\varepsilon = 1$, isodesmic polymerization. As ε decreases, polymerization approaches ideal cooperativity.